Изопреновые каучуки
Сокращения: IR, СКИ
Изопреновые каучуки (СКИ) в настоящее время являются одними из наиболее популярных полимерных материалов, которые применяются в различных областях техники. Широкое распространение данного вида каучуков обусловлено высокими эксплуатационными свойствами данного материала, который чаще всего применяется при изготовлении шин.
В промышленности синтез каучуков проводится полимеризацией мономеров с кратными связями, поликонденсацией полифункциональных соединений и химической модификацией высокомолекулярных соединений. Наряду с развитием производства стереорегулярных каучуков СКИ-3 и СКД успешно развиваются новые направления по созданию высокоэффективных каучуков с комплексом технически ценных свойств. Одним из таких новых путей является синтез стереорегулярных ненасыщенных каучуков общего назначения полимеризацией циклоолефинов с раскрытием кольца. Наиболее доступным и технологичным из таких полимеров является транс-полипентенамер, получаемый из циклопентена с использованием каталитических систем на основе алюминий-органических соединений и галогенидов переходных металлов, также новым направлением является и синтез чередующихся полимеров. Наибольший интерес для промышленности синтетических каучуков представляют чередующиеся сополимеры на основе бутадиена и пропилена.
Основным методом получения синтетических каучуков является полимеризация, осуществляемая технологически в массе (блоке), эмульсии и растворе.
Изопреновый синтетический каучук является продуктом радикальной полимеризации мономера-изопрена в растворителе-изопентана в присутствии каталитического комплекса Циглера-Натта.
Каучук представляет собой стереорегулярный полимер и имеет ту же молекулярную структуру, что и натуральный каучук.
Эмпирическая формула: (С5Н8)n, где n - число звеньев изопрена, составляющих молекулу полимера.
Структурная формула и свойства изопренового каучука
Структурная формула:
nСН2=С(СН3)-СН=СН2 → (-СН2-С(СН3)=СН-СН2-)n
Содержание цис-1,4-звеньев составляет не менее 96%. Внешний вид СКИ-3 - однородная, монолитная, эластичная масса темного цвета. Обладающая упругими свойствами и прочность каучуки сохраняют в сравнительном широком интервале температур.
Удельный вес каучука - 0,91-0,92 г/см3.
Каучук горюч, не ядовит, растворим в бензоле, бензине, хлороформе и других растворителях.
В зависимости от физико-механических, химических свойств и применяемого стабилизатора выпускаются следующие виды каучука: СКИ-3, СКИ-3С, СКИ-3Д, СКИ-3Ш, СКИ-3ЛК, СКИ-3НТ.
Процесс получения изопренового каучука
Процесс его получения как правило складывается из нескольких основных стадий: 1) приготовление катализатора (или компонентов каталитического комплекса); 2) полимеризация; 3) дезактивация катализатора и отмывка раствора полимера от продуктов дезактивации катализатора; 4) отгонка мономера и растворителей (дегазация) и выделение каучука; 5) регенерация возвратных продуктов и очистка-сточных вод.
Промышленные каталитические комплексы получают на основе TiCl4 и алюминийорганических соединений, из которых наиболее эффективны триизобутил-, трифенил-, три-п-толилалюминий. Для промышленных систем чаще всего используют триизобутилалюминий (ТИБА), позволяющий проводить процесс с высокой воспроизводимостью. Привлекают внимание также менее опасные в работе высшие гомологи алюминий-алкилов. Такие каталитические системы обладают высокой стереоселективностью и менее чувствительны к различным примесям.
Оптимальным соотношением компонентов каталитического комплекса является 1 : 1, поскольку при этом наблюдается максимальный выход полимера и практически не образуется циклических структур и олигомеров.
В случае избыточной концентрации триизобутилалюминия происходит более глубокое восстановление Ti4+ (до Ti2+ и даже до элементарного Ti), что приводит к замедлению полимеризации и образованию низкомолекулярных продуктов, в то время как при избытке тетрахлорида титана образуются алкилалюминийдихлориды, вызывающие резкое снижение содержания 1,4-цис-звеньев в полимере и вторичные реакции в полимерных цепях (циклизацию, изомеризацию, сшивание). В результате получаются жесткие, малоэластичные продукты.
С увеличением концентрации катализатора заметно возрастает скорость полимеризации, но уменьшается молекулярная масса образующегося полимера.
В промышленном процессе концентрация каталитического комплекса составляет 1 ± 0,5 % (масс.) (в расчете на мономер).
В процессе приготовления катализатора немаловажным является порядок введения его компонентов. Если алюминий-органическое соединение вводится в раствор TiCl4, то часть тетрахлорида титана остается непревращенной, и при полимеризации наряду с анионно-координационньм механизмом реализуется катионная полимеризация изопрена. Кроме того, возможны процессы цис-транс-изомеризации, циклизации макромолекул под влиянием TiCl4, обратный же порядок введения компонентов приводит к чрезмерному восстановлению части титана и снижению активности катализатора, в связи с чем лучше производить одновременную дозировку компонентов катализатора.
В качестве растворителя при готовке катализатора применяют толуол либо же иные ароматические углеводороды, образующие донорно-акцепторные комплексы с катализатором, за счет чего повышается активность катализатора и снижается содержание геля в полимере.
Выпускаемый промышленностью каучук СКИ-3 по пластичности подразделяется на две группы и должен удовлетворять следующим техническим требованиям:
Технические требования к каучуку СКИ-3
Наименование показателей |
1 группа |
2 группа |
Вязкость по Муни МБ1+4 (100°С), ед. Муни |
75–85 |
65–74 |
Разброс по вязкости внутри партии, ед. Муни, не более |
8 |
8 |
Пластичность |
0,30–0,35 |
0,36–0,41 |
Разброс по пластичности внутри партии, не более |
0,05 |
0,05 |
Эластическое восстановление после определения пластичности, мм, не более |
1,8 |
1,7 |
Условная прочность при растяжении, МПа (кгс/см2), не менее при 23°С при 100°С |
30,4 (310) 21,6 (220) |
30,4 (310) 21,6 (220) |
Относительное удлинение при разрыве, %, не менее |
800 |
800 |
Массовая доля золы, % не более |
0,50 |
0,50 |
Массовая доля металлов, % не более • Меди • Железа • Титана |
0,0001 0,004 0,06 |
0,0001 0,004 0,06 |
Потери массы при сушке, %, не более |
0,60 |
0,60 |
Массовая доля стеариновой кислоты, % |
0,6–1,4 |
0,6–1,4 |
Массовая доля антиоксиданта • Диафена-13 • или С-789 • или ВТС-50 • или Флекзона11 Л, не менее • или Дусантокса Л, не менее • или Сантофлекса 134 ПД, не менее • или АФА-1, не менее • или Дифенил-п-фенилендиамида (ДФФД), не менее |
0,30–0,50 0,20–0,40 0,35–0,55 0,20 0,20 0,20 0,70 0,15 |
Каучуки СКИ-ЗА (содержание геля до 7 %) и СКИ-ЗШ (содержание геля = 7 %) более стабильны по свойствам, чем СКИ-3, имеют повышенные физико-механические показатели и поэтому предназначены для замены НК в некоторых изделиях.
Путем модификации каучука СКИ-3 получают целый ряд новых каучуков, по отдельным показателям приближающихся к натуральному каучуку или даже превосходящих его. При введении карбоксильных групп в каучук путем оксосинтеза получен каучук СКИ-ЗК, СКИ-ЗЭ и СКИ-ЗМ — каучуки, содержащие соответственно эпоксидные и гидроксильные группы. При модификации полиизопрена малеиновым ангидридом или другими производными малеиновой кислоты получают каучук СКИ-ЗМА. Введение уже 1 % модификатора приводит к повышению прочности связи резин с кордом, улучшению упругих и упруго-гистерезисных показателей.
Применение изопреновых каучуков
Изопреновые каучуки, являющиеся каучуками общего назначения, применяют вместо натурального как самостоятельно, так и в сочетании с другими эластомерами при изготовлении практически всех резиновых изделий: шин, разнообразных резинотехнических изделий (транспортерные ленты, рукава, формовые и неформовые детали и др.), резиновой обуви, каучуки содержащие неокрашивающие и нетоксичные стабилизаторы (СКИ-ЗНП), применяют для изготовления медицинских изделий, резин, контактирующих с пищевыми продуктами, и изделий широкого потребления (игрушки, мячи и т. д.). Изопреновый каучук СКИ-ЗД используют в кабельной промышленности для изготовления электроизоляционных резин, каучук СКИ-ЗВ предназначен для вакуумной техники. На основе СКИ-3 получают изопреновый латекс эбониты.
Описание технологической схемы производства
К изопентану и изопрену предъявляются высокие требования по чистоте продукта по причине того, что большинство примесей, сопутствующих изопрену и изопентану, существенно влияют на кинетику полимеризации и микроструктуру образующего полимера, например при содержании воды в системе более 0,001% полимеризация протекает с большим индукционным периодом и резко увеличивается содержание геля в полимере. Димеры изопрена влияют главным образом на микроструктуру полимера, а изобутилен снижает скорость полимеризации. Присутствие циклопентадиена в количестве 0,001% резко снижает скорость полимеризации и молекулярный вес полимера, а при содержании 0,1% циклопентадиена происходит полное отравление катализатора. Углеводороды ацетиленового ряда и диеновые углеводороды приводят к увеличению индукционного периода и существенному снижению скорости полимеризации.
Полимеризация изопрена с титановыми катализаторами проводится в изопентане, вязкость растворов полимера в котором минимальна. Осушенная изопентан-изопреновая фракция подпитывается изопреном до его содержания 12—15% и подается в холодильник 1, охлаждаемый испаряющимся при температуре - 20°С пропаном. Модифицированный каталитический комплекс (до 1 % в расчете на изопрен) подается на полимеризацию с помощью специального дозирующего устройства, регулирующего автоматически подачу катализатора в зависимости от вязкости полимеризата, через холодильник 2.
Активным центром полимеризации является не комплекс, а соединение, образующееся после присоединения первой молекулы мономера.
Полимеризация изопрена осуществляется в батарее, состоящей из двух последовательно соединенных полимеризаторов 31 и З2. При использовании двухкомпонентного каталитического комплекса полимеризация осуществляется в батарее из 4—6 аналогичных аппаратов. Полимеризаторами служат аппараты с мешалками, снабженными лопастями и скребками, обеспечивающими интенсивное равномерное перемешивание во всем объеме полимеризатора и непрерывную очистку поверхности теплообмена, что необходимо для достижения высокого коэффициента теплопередачи. Съем теплоты, выделяющейся при полимеризации изопрена (удельная теплота реакции полимеризации 1050 кДж/кг) осуществляется через рубашку полимеризатора, охлаждаемую рассолом. Температуру полимеризации повышают по ходу процесса с 45°С в полимеризаторе З1 до 55°С в полимеризаторе З2, что обеспечивает конверсию изопрена 85 - 90% при достаточно низкой вязкости полимеризата.
Назначение этой технологической стадии заключается в обрыве реакции полимеризации при достижении заданной конверсии и превращение компонентов катализатора в соединения, которые не вызывают при дальнейшей обработке полимеризата вторичных процессов (деструкции и структурирования), приводящих к снижению качества изопренового каучука.
По окончании процесса полимеризации производится дезактивация (разрушение) каталитического комплекса и заправка полимеризата антиоксидантами (стабилизация полимера).
Процесс дезактивации катализатора проводят в основном двумя способами:
1. Разрушение каталитического комплекса, не переводя переходной металл (Ti3) в неактивную форму с последующей отмывкой полимеризата.
2. Дезактивация катализатора за счет его перевода в неактивную форму.
Первый способ основан на химическом взаимодействии метанола (метилового спирта) с компонентами каталитического комплекса. Химическая реакция в этом случае проходит в соответствии с уравнением реакции:
TiCl3CH3OH =>TiCl3+CH3OH
Al(iC4H9)2Cl + 2CH3OH=>AlCl(OCH3)2 + 2C4H10
При отмывке полимера водой от продуктов разрушения каталитического комплекса полученные алкоголяты гидролизуются:
TiCl3 CH3OH + 6H2O=>TiCl3+6Н2О + CH3OH
AlCl(OCH3)2 + H2O=> AlOCl + 2CH3OH
При втором способе происходит комплексообразование с соединениями Ti3+ аминных соединений, содержащих в составе применяемых антиоксидантов и с последующим восстановлением титана до TiCl в присутствии HCl. При последующей отмывке полимеризата соединения Ti и Cl вымываются водой.
Схема полимеризации, дезактивации, отмывки полимеризата и стабилизации каучука при получении СКИ-3
1,2 — холодильники; 31, 32 — полимеризаторы; 4, 7, 10, 13 — интенсивные смесители; 5— аппарат с мешалкой; 6,9, 12 — насосы; 8, 11 — отстойники.I — изопентан; II — изопрен; III — каталитический комплекс; IV — пропан; V - рассол;VI — этилен; VII — стоппер; VIII — обессоленная вода; IX - суспензия стабилизатора; Х — полимеризат на дегазацию; XI — вода на отпарку органических соединений.
Для дезактивации катализатора применяются соединения, реагирующие с компонентами катализатора с образованием растворимых в воде продуктов, — алифатические спирты, кислоты, амины и др. В промышленности для этой цели чаще всего используют метиловый спирт, который можно регенерировать из отмывной воды, или воду. Смешение полимеризата с дезактиватором (стоппером) осуществляется в интенсивном смесителе 4 (рис.8). Для обеспечения полной конверсии активных компонентов катализатора стоппер подается в значительном избытке по сравнению со стехиометрическим количеством.
Из интенсивного смесителя 4 полимеризат поступает в аппарат с мешалкой 5, где в течение 15—20 мин завершается процесс дезактивации катализатора. Этот же аппарат одновременно служит емкостью, в которой осуществляется снижение давления в системе. Полимеризат из емкости 5 насосом 6 подается в интенсивный смеситель 7 на смешение с циркуляционной водой, подаваемой из отстойника 8 насосом 9, и расслаивается в отстойнике 8. Частично отмытый от продуктов дезактивации полимеризат направляется в интенсивный смеситель 10, куда подается умягченная вода. Смесь расслаивается в отстойнике 11. Отмытый полимеризат подается в интенсивный смеситель 13 на смешение со стабилизатором, который подается в виде углеводородного раствора или водной суспензии, и направляется на дегазацию. Продукты дезактивации каталитического комплекса выводятся насосами 9 и 12 на химическую очистку.
В качестве стабилизаторов для каучука СКИ-3 используют соединения аминного и фенольного типа: смесь N-фенил-р-нафтиламина (нафтам-2) и N,N'-дифенил-п-фенилендиамина (ДФФДА) в соотношении 1 : 1 при дозировке 0,6 -0,8% в расчете на каучук; для получения светлых марок каучука 2,6-ди-трет-бутил-4-метилфенол (ионол).
Схема дезактивации катализатора и отмывки полимеризата
1,4,8 — интенсивные смесители; 2 — аппарат с мешалкой; 3, 7, 9, 10 — насосы; 5 — отстойник; 6 — промывная колонна.
I — полимеризат; II — растворитель; III — стоппер; IV — подкисленная вода; V — полимеризат на дегазацию; VI — вода на отпарку органических соединений; VII — суспензия стабилизатора.
В некоторых производствах СКИ-3 для обеспечения более полной отмывки полимеризата от водорастворимых продуктов используют роторную промывную колонну, имеющую 7 турбинных мешалок на общем валу и 8 отстойных зон. По этой схеме полимеризат поступает в интенсивный смеситель 1 на разрушение каталитического комплекса, куда подается и стоппер, чаще всего метиловый спирт.
Из интенсивного смесителя 1 полимеризат переводится в аппарат с мешалкой 2, где смесь полимеризата со стоппером выдерживается 15-20 мин. Этот же аппарат одновременно служит промежуточной емкостью. Полимеризат из емкости 2 насосом 3 подается в интенсивный смеситель 4, куда насосом 7 из куба промывной колонны 6 вводится часть промывной воды. Смесь полимеризата с водой поступает в отстойник 5, где разделяется на два слоя. Нижний водный слой насосом 10 выводится из системы, а верхний слой, представляющий собой частично отмытый полимеризат, поступает в промывную колонну б, в которой полимеризат окончательно отмывается от продуктов разложения каталитического комплекса. Для промывки применяется смесь возратной воды из системы дегазации и частично умягченной обескислороженной воды, подкисляемой соляной кислотой до рН 3.
Отмытый полимеризат отводится из верха колонны 6 в интенсивный смеситель 8, куда насосом 9 подается водная суспензия стабилизатора. Полимеризат, заправленный стабилизатором, поступает в отстойник-усреднитель.
Спонсор статьи
?
Как стать спонсором статьи?
1) Зарегистрируйтесь на сайте как компания (обязательно необходимо указать адрес сайта)
2) Разместите на своем сайте "индекс цен" или "логотип пропласт.ру"
Как стать спонсором статьи?
1) Зарегистрируйтесь на сайте как компания (обязательно необходимо указать адрес сайта)
2) Разместите на своем сайте "индекс цен" или "логотип пропласт.ру"